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We present the concept of selective readout for broadband resonant mass gravitational

wave detectors. This detection scheme is capable of specifically selecting the signal from the

contributions of the vibrational modes sensitive to the gravitational waves, and efficiently

rejecting the contribution from non gravitationally sensitive modes. Moreover this readout,

applied to a dual detector, is capable to give an effective reduction of the back-action noise

within the frequency band of interest. The overall effect is a significant enhancement in the

predicted sensitivity, evaluated at the standard quantum limit for a dual torus detector. A

molybdenum detector, 1 m in diameter and equipped with a wide area selective readout,

would reach spectral strain sensitivities ∼ 2 × 10−23 Hz−1/2 between 2-6 kHz.

The concept of sensitive and broadband acoustic mass gravitational wave (GW) detectors has

been recently presented with reference to a dual sphere detector [1]. Such a novel class of detectors

may be of great interest, as they would be sensitive in a broad frequency interval of few kHz

in the kHz range, were GW signals from fully relativistic stellar sources are expected [2]. A

practical implementation of such a detector could suffer from: i) unwanted non-GW active resonant

modes in the frequency region of interest, ii) additional thermal noise, due to the low frequency

contribution of the high frequency non GW sensitive modes [3]. These difficulties may be overcome

by introducing a geometrically selective readout, capable of specifically selecting the contribution

to the signal from all the GW sensitive modes. We have found also an additional bonus: the scheme

is capable to give an effective reduction of the back-action noise within the bandwidth. The overall

effect is a significant enhancement in the sensitivity.

In a “dual” detector one would measure the differential displacement, driven by the GW, of

the nearly faced surfaces of two concentric massive bodies, mechanically resonating at different

frequencies [1]. In this scheme the centers of mass of the two bodies coincide and then remain
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mutually at rest while the masses resonate. The differential displacement is then only due to the

internal vibrational modes, while the centers of mass provide the rest frame for the measurement.

This design allows the use of wide bandwidth (non resonant) readouts, evolution in concept and

in technology of the resonant readouts used for bar detectors [4].

A basic dual detector can be represented as a simple one dimensional system [Fig. 1(a)], where a

force Fe, acting on two different mechanical resonators, is evaluated by a differential measurement

of their positions x1 and x2. In the frequency region between the two resonant frequencies, Fe

drives the slow resonator above its resonance νs and the fast one below its resonance νf . The

responses of the two resonators are then out of phase by π radians and therefore the differential

motion xd results in a signal enhancement over the single oscillator responses [Fig. 1(b)], as shown

by the transfer function HFe = xd/Fe [Fig. 1(c)].

Such a scheme in addition leads to a reduction of the back-action noise, just within the detector

bandwidth of interest. In fact the system response to the back-action force, that it is coherently

applied with opposite direction on the two masses, is nearly exactly in phase and the consequent

differential displacement is highly depressed at a frequency f∗∗, as shown in the transfer function

Hba = xd/Fba (Fig. 1c). We measure xd with a displacement amplifier, described by its additive

displacement and back-action force noises, with white power spectra SXX(ω) = Sxx and SFF (ω) =

Sff , so that the total displacement noise is Sxx + |Hba(ω)|2Sff . The noise power spectrum on the

measurement of Fe, due to the amplifier system, is then:

SFe(ω) =
(
Sxx + |Hba(ω)|2Sff

)
/|HFe(ω)|2 . (1)

If we take as reference an operation at the Standard Quantum Limit (SQL), we may consider

SxxSff = ~
2

4 , and the noise figure can be optimized by adjusting the ratio Sxx/Sff . In a wide

bandwidth detection strategy Sxx and Sff must be balanced to give the lowest noise within the

bandwidth. In doing so we profit by the subtraction effect in the back-action noise transfer function

Hba, and obtain a dip at the frequency f∗∗, as shown in Fig. 1(d). We finally notice that, to fully

exploit the back-action reduction features, f∗∗ should be placed, by a proper choice of the system

parameters, amid the oscillator frequencies.

In the case of a three-dimensional body, the dynamics of elastic deformations is given as the

superposition of the dynamics of an almost infinite number of normal modes of vibration [5]. An

obvious way to preserve the convenient features for signal and back action noise outlined above, is

to bring the real system to be as close as possible to the idealized two modes system. In fact when

only the first quadrupolar mode can be considered for each body, the response to a GW of such
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FIG. 1: (a) One-dimensional “dual” detector: the same force Fe is measured by the relative displacement

xd of two resonators. (b) Transfer functions of the slow resonator (continuous line) and of the fast resonator

(dashed line). (c) Dual detector transfer functions: signal HFe
= xd/Fe (continuous line), back-action

Hba = xd/Fba (dashed line). (d) Wideband optimized noise.

a system can again be described by the simple one-dimensional model. This can be accomplished

with a novel selective readout we propose here, capable of rejecting a large number of normal modes

on the basis of their symmetry. This geometrically based mode selection senses the surface position

of a body on specific regions, so that the related deformations can be combined with a weight/sign

properly chosen to optimize the total response to normal modes of quadrupolar symmetry. Such a

strategy to select specific vibrational modes and to reject a class of unwanted modes is conceptually

different from the strategy now employed in GW acoustic detectors. Resonant bar detectors [6]

and spherical detectors [7, 8] reconstruct the amplitude of the normal modes excited by the GWs

by the use of resonant displacement readouts coupled to the modes. With a proper choice of the

read-out surfaces, the resonant scheme is not sensitive to the thermal noise of out of resonance

modes and gives an efficient frequency based mode selection. However this feature necessarily

limits the detector bandwidth, due to the thermal noise contribution of the resonant transducer,

as in every resonant readout scheme. By contrast the geometrically based mode selection selects

gravitationally sensitive normal modes by means of their geometrical characteristics, and shows a

significant rejection of non quadrupolar modes without affecting the detector bandwidth. For this

reason it can be effectively applied to a “dual” wideband detector.

Without loss of generality, we apply these new concepts to a dual torus detector [Fig. 2(a)], a

convenient geometry where the advantages of the proposed scheme can be fully exploited. In the
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FIG. 2: (a) The two concentric torii, Te, Ti are made of materials of density ρe, ρi and have the same

height. The inner torus may also have null internal radius and be reduced to a cylinder. The relative distance

between the two bodies is measured in 4 regions (in black), each of area ST , for the whole torus height.

(b) Section of the detector showing the signal enhancement obtained when a GW signal drives the external

torus above resonance and the internal torus below resonance. The difference Xd = x1 + x3 − x2 − x4,

proportional to the GW strength, is not dependent on a number of non GW sensitive modes.

dual torus we average the differential displacement in 4 distinct areas x1..4 [Fig. 2(b)] and combine

them to obtain Xd = x1 + x3 − x2 − x4. The detector displays its maximal sensitivity when the

GW propagates along the z axis, the symmetry axis of the system. The corresponding force does

not depend on z and the system response can be well described by plane strain solutions, where

the displacements are functions of x and y only and the displacement along z vanishes. All the

components of the internal stress are also independent by z. In this case the displacement normal

modes of a single torus, eigenfunctions of the free body dynamic equations, are functions of the

kind:

w
+
a, n(r) = fa, n cos (a θ) ir + g a, n sin (a θ) iθ

w
×

a, n(r) = −fa, n sin (a θ) ir + g a, n cos (a θ) iθ ,

where the functions fa, n, g a, n are linear combinations of Bessel functions of the coordinate r, with

coefficients given by the boundary conditions. The integer a represents the angular symmetry of the

mode, while n identifies the mode order within the angular family. The orthogonal displacement

fields w
+
a, n,w

×

a, n represent the same radial distribution of the deformation, mutually rotated by

π
2a : for this reason they share the same eigenvalue ωa, n, called resonant frequency of the mode.

Any displacement u may be written as linear superposition of these basis functions:

u(r, t) =
∑

s, a, n

w
s
a, n(r) qs

a, n(t) , (2)

where the time dependent coefficients are determined by the force acting on the body and s = +,×.
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A + polarized GW propagating along the z-axis applies on the mass of density ρ the force

density Fgw(t)Ggw(r):

Fgw(t) =
1

2
ρ ḧ(t)

Ggw(r) = r cos ( 2 θ ) ir − r sin ( 2 θ ) iθ . (3)

For symmetry reasons this force can only excite w
+ quadrupolar (a = 2) modes. A “weight

function” approach to the problem will give the mathematical framework to study the selective

read-out, which implements the difference Xd = x1 + x3 − x2 − x4 [Fig. 2(b)]. If ue and ui are the

displacements of the torus Te and Ti [9], we define the observable physical quantity of the system

as:

Xd(t) =

∫
[ue(r, t) + ui(r, t) ] ·

P4(r)

PN
dV , (4)

where the “selective” measurement strategy and detection scheme is implemented by the weight

function P4(r) = P r
4 (r)P θ

4 (θ) ir, where:

P r
4 = δ(r − re) − δ(r − ri)

P θ
4 =

1∑

m=0

4∑

n=0

(−1)n+m Θ [ θ + (−1)mα− n
π

2
] (5)

and Θ(x) represents the unit step function. The normalization is PN = ST , area of one sam-

pling region [Fig. 2(a)]. Here the term P r
4 gives the requested displacement difference re − ri

[Fig. 2(b)], while P θ
4 reduces the angular integral over 4 distinct regions, 2α wide, centered around

θ = 0, π
2 , π,

3π
2 [Fig. 3(a)]. A value α = 0.3 rad is assumed to perform the following calculations.

For comparison we consider a non selective transducer system, which senses the displacement over

a single area, centered for example at θ = 0. Its weight function P1 has angular component

P θ
1 = Θ ( θ + α) − Θ ( θ − α) + Θ ( θ + α− 2π) − Θ ( θ − α − 2π), while the radial dependence and

the normalization remain the same as P4.

When we evaluate the observable Eq. (4), by using the expansion Eq. (2) and the weight

functions P4 or P1, each w
+
a, n mode contribution depends on its angular symmetry a. As shown

in Fig. 3(b), in both cases the modes contribution oscillates and rapidly decreases, due to the

averaging over the area ST . But in the case of P4 only the symmetry values a = 2 + 4 k, with k

non negative integer, give non null contributions to our observable Eq. (4). To summarize, the

quadrupolar modes family (k = 0) contribution is essentially preserved, many mode families are

rejected (a 6= 2 + 4k, k ≥ 0) and the residual higher order families (a = 2 + 4 k, k > 0) give a

reduced contribution.
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We point out that the normal modes w
×, proportional to sin (a θ), and excited by ×-polarized

gravitational waves, are rejected by P4(r), for every value of a. When a second transducer system,

identical but rotated by π/4, is employed to detect these w
× modes, any z-axis propagating GW

can be fully characterized in terms of intensity and polarization.

The detector sensitivity can be evaluated by the transfer function TXd
≡ X̃d(ω)/F̃ (ω), which

gives the observable Xd induced by a generic driving force density F (t)G(r) [10]. We call

(ws
a, n, ω a, n) and (vs

a, n, $ a, n) the normal modes and eigenfrequencies of the torus Te and Ti,

while the loss angles (φ, ψ), inversely proportional to the mode quality factor Q, describe the

dissipation. We have:

TXd
(ω) =

∑

s, a, n

∫
G(r) · ws

a, n(r)dV
∫

w
s
a, n(r) · P(r)

PN
dV

ρe [(ω2
a, n − ω2 ) + i ω2

a, nφ a, n(ω)]
+

∫
G(r) · vs

a, n(r)dV
∫

v
s
a, n(r) · P(r)

PN
dV

ρi [($2
a, n − ω2 ) + i$2

a, nψ a, n(ω)]
,(6)

where P(r) can be P4(r) or P1(r). If F (t) and G(r) are given by Eq. (3), by Eq. (6) we calculate

the system transfer function to a GW, defined as Hgw(ω) ≡ X̃d(ω)/h̃(ω). In the simple case

ρe = ρi = ρ, we have:

Hgw(ω) = −(ρω2/2) TXd
(ω)

∣∣
G(r)=Ggw(r)

, (7)

while the more general case is straightforward. The read-out back-action force is applied in the

sensing areas with the same intensity but opposite sign for the two bodies, so that its spatial

density is given by P(r)
PN

. The corresponding system transfer function is then:

Hba(ω) ≡ TXd
(ω)

∣∣
G(r)=P(r)/PN

. (8)

In close analogy with Eq. (1), the transfer functions Eqs. 7 and 8 give the detector sensitivity

to GW as: Shh(ω) =
(
Sxx + |Hba(ω)|2Sff

)
/|Hgw(ω)|2. In Fig. 3(c) we compare the sensitivities of

a detector, evaluated for the selective readout P4 and for the single area read-out P1.

The main effect of the selective readout is to cancel out both thermal and back-action noise

contributions due to the non quadrupolar modes, so that a flat response is obtained in the full

bandwidth of few kHz and the back action reduction feature is exploited. The detector dimensions

are properly chosen to profit by the GW sensitivity of the second order quadrupolar mode of the

outer torus. We also notice that the use of large read-out sensing area highly reduces the thermal

noise due to the cumulative effect of all the normal modes [11]. In fact, as the shorter wavelength

modes are averaged out, a very good transfer function convergence may be obtained by adding less

than 100 modes.
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FIG. 3: (a) Angular dependence of the weight function P4 (continuous line) and of the displacement induced

by a w
+ mode (dashed line) with symmetry a = 2; the mode contribution is proportional to the integral of

the product of these two functions. (b) Normalized angular contribution of normal modes as a function of a

evaluated for the weight functions P4 (hollow symbols) and P1 (crosses). (c) Predicted sensitivity of a Mo

dual torus detector (same as Fig. 4) with the selective read-out P4 (continuous line) and with the standard

read-out P1 (dotted line).
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FIG. 4: Predicted spectral strain SQL sensitivities of two different dual detector configurations. The pre-

dicted SQL sensitivities of two advanced interferometric detectors are also shown (dotted lines): LCGT and

a narrow band design of Advanced LIGO. Continuous line: Mo dual detector, inner cylinder radius 0.25

m, outer torus internal-external radius 0.26 - 0.47 m, height 2.35 m, weight 4.8 + 11.6 tons, fundamental

quadrupolar modes 1012 Hz and 5189 Hz, amplifier noise Sxx = 5 × 10−46 m2/Hz, Q/T > 2 × 108 K−1.

Dashed line: SiC detector, inner cylinder radius 0.82 m, outer torus internal-external radius 0.83 - 1.44 m,

height 3 m, weight 20.5 - 41.7 tons, Sxx = 3 × 10−46 m2/Hz, Q/T > 2 × 108 K−1.

Finite element analysis demonstrates the selective read-out rejection capabilities also for many

classes of 3-dimensional vibrational modes. The sensitivity enhancement over the standard readout

scheme is then not limited to our plane strain approximation, and the dual torus configuration could

be evolved in a complete detector. A practical readout configuration is a series of 4 capacitive
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transducers, gradiometrically connected and sensed by a single SQUID amplifier. This implements

the selective scheme P4 and the consequent back-action reduction. The needed sensitivity could

be reached as recent progress show that the SQUID amplifiers are approaching the quantum limit,

now also in the necessary strong coupling configuration [12], and that the electric polarization field

can be increased up to the material intrinsic limitations [13].

To evaluate the limits of our design, we can evaluate the sensitivity at the SQL of some practical

configurations of detector material and geometry. As usual a low dissipation material is required

to reduce the effect of the thermal noise. Molybdenum represents an interesting choice, as it shows

high cross-section for GWs and its mechanical dissipation was investigated at low temperature

giving Q/T > 2× 108 K−1 for acoustic normal modes [14]. In Figs. 3 and 4 is shown the SQL sen-

sitivity of a Mo detector with dimensions within the present technological production capabilities.

In Fig. 4 we also show the SQL of a detector made of SiC, a ceramic material currently used to

produce large mirrors or structures [15], with mechanical and thermal properties of interest here

but not jet characterized in terms of low temperature mechanical dissipation.

The selective readout scheme applied to the dual concept allows the design of detectors tailored

for relatively high frequency GW and with very few spurious modes within their wide bandwidth.

These features could make the dual torus detector complementary to advanced interferometric

detectors, as shown in Fig. 4 by the comparison with the expected sensitivities of LCGT [16] and

one of the possible setting of Advanced LIGO in narrow band operation [17].
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